

Task

$$\mathbf{z} = f_{\boldsymbol{\theta}}(\mathbf{H}; \mathbf{L}, \mathbf{P}), \longrightarrow \mathbf{H} = f_{\boldsymbol{\theta}}^{-1}(\mathbf{z}; \mathbf{L}, \mathbf{P}), \ \mathbf{z} \sim P_{\mathbf{z}}(\mathbf{r})$$

the probability density function $P_{H|L,P}(H \mid L, P; \theta)$ can be accurately defined by using the change-of-variables formula

$$P_{\mathbf{H}|\mathbf{L},\mathbf{P}}(\mathbf{H}|\mathbf{L},\mathbf{P};\boldsymbol{\theta}) = P_{\mathbf{z}}(f_{\boldsymbol{\theta}}(\mathbf{H};\mathbf{L},\mathbf{P})) \left| \det \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{H};\mathbf{L},\mathbf{P})}{\partial \mathbf{H}} \right|,$$
$$\mathcal{L}(\boldsymbol{\theta};\mathbf{L},\mathbf{P},\mathbf{H}) = -\log P_{\mathbf{z}}(f_{\boldsymbol{\theta}}(\mathbf{H};\mathbf{L},\mathbf{P})) - \sum_{n=0}^{N-1} \log \left| \det \frac{\partial f_{\boldsymbol{\theta}}^{n}(\mathbf{h}^{n};\mathbf{L},\mathbf{P})}{\partial \mathbf{h}^{n}} \right|.$$

Once the optimal parameter θ^* of the invertible network f_{θ} is learned, we can sample an HRMS from $P_{H|L,P}(H \mid L, P; \theta)$, as follows:

 $\mathbf{H} = f_{\boldsymbol{\theta}_{*}}^{-1}(\mathbf{z}; \mathbf{L}, \mathbf{P}), \ \mathbf{z} \sim \mathcal{N}(\mathbf{z} | \mathbf{0}, \mathbf{I}_{s}).$

PanFlowNet: A Flow-Based Deep Network for Pan-sharpening Gang Yang¹, Xiangyong Cao^{2*}, Wenzhe Xiao², Man Zhou³, Aiping Liu^{1*}, Xun Chen¹, Deyu Meng² University of Science and Technology of China; 2 Xi'an Jiaotong University; 3 Nanyang Technological University

Network architecture

Architectures of submodules

Effectiveness verification

Table 2: PSNR values of PanFlowNet with different noises.

Noise	PSNR \uparrow	SSIM \uparrow	$SAM \downarrow$	ERGAS \downarrow
noise 1	41.8561	0.971218	0.0223989	0.933770
noise 2	41.8581	0.971229	0.0223936	0.933516
noise 3	41.8579	0.971224	0.0223922	0.933545
noise 4	41.8563	0.971216	0.0223946	0.933642
noise 5	41.8583	0.971228	0.0223937	0.933529
noise 6	41.8552	0.971204	0.0224002	0.933823

HRMS 1

Figure 4: The visualization results are used to validate the effectiveness of our proposed PanFlowNet. The first row visualizes different HRMS images generated from different noises and gives LRMS and PAN images on the WorldView-II dataset. The second row visually shows the differences in the detailed parts that each HRMS image focuses on ground truth.

$$\mathbf{h}_{n+1} = f_{\boldsymbol{ heta}}^n (\mathbf{h}_n; \mathbf{L}, \mathbf{P}).$$

 $\mathbf{h}_{n+1}^1 = \mathbf{h}_n^1 \odot \exp\left(s_1\left(\mathbf{h}_n^2\right)\right) + t_1\left(\mathbf{h}_n^2\right),$
 $\mathbf{h}_{n+1}^2 = \mathbf{h}_n^2 \odot \exp\left(s_2\left(\mathbf{h}_{n+1}^1\right)\right) + t_2\left(\mathbf{h}_{n+1}^1\right)$

Results

Table 1: Experimental results of all the competing methods on the three benchmark datasets. The best and the second best values are highlighted in **bold** and **underline**, respectively.

Methods	Params	WorldView II				WorldView III				GaoFen2			
Methous		$\mathbf{PSNR}\uparrow$	$\text{SSIM} \uparrow$	$SAM \downarrow$	$\text{ERGAS} \downarrow$	PSNR ↑	SSIM \uparrow	$SAM \downarrow$	$\text{ERGAS} \downarrow$	$PSNR \uparrow$	$\text{SSIM} \uparrow$	$SAM \downarrow$	ERGAS \downarrow
SFIM	-	34.1297	0.8975	0.0439	2.3449	21.8212	0.5457	0.1208	8.9730	36.9060	0.8882	0.0318	1.7398
Brovey	-	35.8646	0.9216	0.0403	1.8238	22.5060	0.5466	0.1159	8.2331	37.7974	0.9026	0.0218	1.3720
GS	-	35.6376	0.9176	0.0423	1.8774	22.5608	0.5470	0.1217	8.2433	37.2260	0.9034	0.0309	1.6736
IHS	-	32.1601	0.9812	0.0461	2.0278	22.5579	0.5354	0.1266	8.3616	38.1754	0.9100	0.0243	1.5336
GFPCA	-	34.5581	0.9038	0.0488	2.1411	22.3344	0.4826	0.1294	8.3964	37.9443	0.9204	0.0314	1.5604
PNN	0.0689	40.7550	0.9624	0.0259	1.0646	29.9418	0.9121	0.0824	3.3206	43.1208	0.9704	0.0172	0.8528
PANNET	0.0688	40.8176	0.9626	0.0257	1.0557	29.6840	0.9072	0.0851	3.4263	43.0659	0.9685	0.0178	0.8577
MSDCNN	0.2390	41.3355	0.9664	0.0242	0.9940	30.3038	0.9184	0.0782	3.1884	45.6874	0.9827	0.0135	0.6389
SRPPNN	1.7114	41.4538	0.9679	0.0233	<u>0.9899</u>	30.4346	0.9202	0.0770	3.1553	47.1998	0.9877	0.0106	0.5586
GPPNN	0.1198	41.1622	0.9684	0.0244	1.0315	30.1785	0.9175	0.0776	3.2593	44.2145	0.9815	0.0137	0.7361
Ours	0.0873	41.8584	0.9712	0.0224	0.9335	30.4873	0.9221	0.0751	3.1142	47.2533	0.9884	0.0103	0.5512

Figure 5: Visual comparison of all the competing methods on WorldViewII. The last row visualizes the error maps and average errors between the pan-sharpening results and the ground truth.

Ablations

JUIAU	UIIS			
Table 4: PSNoer of stages ofvalues are high	R values of on WorldVi hlighted in	f PanFlowN ewII. The b bold and <u>u</u>	Net with di best and the inderline, r	ifferent num- e second best respectively.
Stages (K)	PSNR ↑	SSIM ↑	SAM \downarrow	ERGAS \downarrow
1	38.2469	0.9471	0.0344	1.4294
2	40.7152	0.9639	0.0255	0.9935
3	41.2664	0.9674	0.0236	0.9935
1	A1 858A	0 0712	0.0224	0 0335

Table 5: The results of different configurations on WorldViewII. The best and the second best values are highlighted in **bold** and underline, respectively. (PS: Parameters Sharing)

	Configuration	L	Р	PS	PSNR ↑	SSIM \uparrow	SAM \downarrow	ERGAS \downarrow
-	Ι	$ \times$	X	\checkmark	31.3136	0.9033	0.0840	3.2813
	Π	\checkmark	\times	\checkmark	36.1760	0.9058	0.0315	1.6287
	III	\times	\checkmark	\checkmark	40.8503	0.9647	0.0253	1.0539
	IV	\checkmark	\checkmark	X	42.0865	0.9719	0.0215	0.9062
	PanFlowNet(Ours)	\checkmark	\checkmark	\checkmark	41.8584	<u>0.9712</u>	0.0224	0.9335

PARIS

The last row visualizes the error maps and average errors between the pan-sharpening results and the ground truth

